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Smooth composite pulses for high-fidelity quantum information processing
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We present a systematic SU(2) approach for construction of composite sequences of pulses with smooth
temporal shapes that produce high-fidelity two-state excitation profiles. This makes possible the application
of composite pulses to quantum control and quantum information processing with short and ultrashort laser
pulses. We present an exact analytic formula for the composite phases for arbitrarily accurate broadband pulses
and examples of narrowband, passband, and fractional-π pulses as well as composite pulses with detuning
compensation.
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I. INTRODUCTION

The technique of composite pulses developed originally in
nuclear magnetic resonance (NMR) [1–9] is a powerful tool for
quantum state manipulation. This technique replaces the single
pulse used traditionally for driving a two-state transition in a
quantum system by a sequence of pulses with appropriately
chosen phases, which are used as a control tool for shaping
the excitation profile in a desired manner. In particular,
a nearly perfect population inversion, which is insensitive
to variations in the interaction parameters (the amplitude
and/or the frequency of the pulses), can be achieved. This
technique therefore combines the accuracy of single π -pulse
excitation with a robustness similar to adiabatic techniques.
For this reason, composite pulses have enjoyed steadily
increasing attention in the field of quantum computation,
wherein ultrahigh fidelity of gate operations is required, e.g., in
the implementation of quantum gates and quantum algorithms
with trapped ions [10–15].

The existing methods for design of composite pulses
are developed for pulses of rectangular temporal shape,
which is suited for NMR experiments [1–9] as well as for
atomic excitation with microsecond pulses [10–15]. However,
rectangular pulse shapes are hard to implement on shorter
time scales, for instance, with femtosecond pulses, because
of the prohibitively large Fourier spectrum of a rectangular
pulse. Ultrashort pulses hold a great promise for quantum
computation because of the absence of decoherence and the
emergence of techniques for selective and efficient control of
qubits [16,17]. Such ultrashort pulses can be shaped [18,19] to
have smoothly varying bell-shaped envelopes, e.g., Gaussian
or hyperbolic secant. Unlike the extensive literature of
excitation by single pulses [20–28], the theory of composite
sequences of pulses with such smooth envelopes is largely
missing, which has hitherto limited the use of this powerful
control technique on short and ultrashort time scales.

In this paper, we present a simple systematic approach,
which allows the construction of composite sequences of
pulses with smooth shapes that can create broadband, nar-
rowband, and passband excitation profiles corresponding to
effective π and fractional-π pulses, with any desired flatness.
Our method is based upon the SU(2) representation of the prop-
agator of the two-state system [29], instead of the commonly
used intuitive SO(3) rotations in the Bloch vector picture [1–9].
The latter provide geometric depiction of the action of the

composite pulse but are more demanding numerically. The
SU(2) approach allows us to use the available exact analytic
solutions for special pulse shapes, which, in turn, allow us
to obtain the phases of the respective composite pulses. We
will find that up to a certain number of ingredient pulses the
composite phases are independent of the pulse shapes.

II. PROPAGATOR OF A COMPOSITE PULSE SEQUENCE

A pure state of a coherently driven two-state quantum
system is described, in the interaction representation, by the
state vector

|�(t)〉 =
2∑

n=1

cn(t)e−iEnt/h̄|n〉, (1)

where En are the eigenenergies of the unperturbed Hamil-
tonian H0, H0|n〉 = En|n〉, and cn(t) is the complex-valued
probability amplitude of state |n〉. The amplitudes c1(t) and
c2(t) are solutions of the Schrödinger equation,

ih̄∂tc(t) = H(t)c(t), (2)

where H(t) is the Hamiltonian of the system. We will assume
that E2 � E1; then the Bohr transition frequency will be ω0 =
(E2 − E1)/h̄. In the presence of an external coherent field and
after performing the rotating-wave approximation (RWA), the
Hamiltonian reads

H(t) = h̄

2

[
0 �(t)e−iD(t)

�(t)∗eiD(t) 0

]
, (3)

with D(t) = ∫ t

ti
�(t ′)dt ′, where � = ω0 − ω is the detun-

ing between the laser carrier frequency ω and the Bohr
transition frequency ω0. For electric-dipole transitions the
Rabi frequency �(t) parameterizes the coupling between
the electric field E(t) and the transition dipole moment d:
�(t) = −d · E(t)/h̄; for two-photon Raman transitions the
Rabi frequency is proportional to E(t)2. The evolution of
the system is described by the propagator U, which connects
the values of the amplitudes at the initial and final times,
ti and tf : c(tf) = U(tf,ti)c(ti). The propagator is conveniently
parameterized with the complex Cayley-Klein parameters a

and b as

U =
[

a b

−b∗ a∗

]
. (4)
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For exact resonance (� = 0), the Schrödinger equation is
solved exactly for any �(t). Then the Cayley-Klein parameters
depend only on the pulse area A = ∫ tf

ti
�(t)dt :

a = cos(A/2), b = −i sin(A/2), (5)

with �(t) assumed real. The transition probability is p =
|b|2 = sin2 (A/2), and hence, complete population inversion
occurs for A = π (π pulses) or odd-integer multiples of π .
This inversion is sensitive to variations in the pulse area: a
small deviation ε from the value π , i.e., A = π (1 + ε), causes
an error in the inversion of order O(ε2): p = 1 − π2ε2/4 +
O(ε4). This sensitivity to errors can be greatly reduced, to any
desired order, by replacing the single π pulse by a composite
pulse sequence.

A constant phase shift φ in the Rabi frequency, �(t) →
�(t)eiφ , is imprinted into the propagator (4) as

Uφ(A) =
[

a be−iφ

−b∗eiφ a∗

]
. (6)

A sequence of N pulses, each with area Ak and phase φk ,
produces the propagator

U(N) = UφN
(AN )UφN−1 (AN−1) · · · Uφ1 (A1). (7)

Equations (5)–(7) allow us to calculate the propagator pro-
duced by a composite sequence of pulses; it depends explicitly
on the areas Ak and the phases φk of the ingredient pulses.

III. COMPOSITE π PULSES

A. Conditions for the composite phases

Our objective is to produce an excitation profile that is
maximally robust to variations in the pulse area A at selected
value(s) of A. Contrary to most known composite pulses,
we assume for simplicity that all pulse areas are equal,
Ak = A(1 + ε) (k = 1,2, . . . ,N ). This assumption is natural
for pulsed lasers because they produce a train of possibly
imperfect but identical pulses. It is relatively easy to impose
a different phase on each pulse by using an acousto-optical
modulator, electro-optical modulator or a pulse shaper [18,19].
We consider an odd number of pulses, N = 2n + 1, although
this assumption is not crucial; the rationale behind this is that
for A = π and ε = 0 the composite pulse sequence has the
action of a (2n + 1)π pulse (apart from a phase shift), which
causes a perfect inversion. We also require that the composite
sequence is symmetric with respect to reversal of pulses, i.e.,
the phases obey φk = φN+1−k; this “anagram” condition leads
to symmetric inversion profiles. Because the overall phase
of the composite sequence is irrelevant but only the relative
phases of the pulses matter for the population changes, we set
φ1 = φN = 0; hence, we have n different phases, which are
treated as free parameters.

The next step is to calculate the overall propagator (7) and
to set the first n nonvanishing derivatives of U

(N)
11 with respect

to the pulse area A to zero at the desired value of A. In such
a manner we obtain a system of n coupled nonlinear algebraic
equations for the n phases. The symmetry assumption about
the phases, φk = φN+1−k , ensures that either all even-order or
all odd-order derivatives vanish; hence, the n phases allow us
to nullify the first 2n derivatives.

We use this approach to derive the phases for three major
types of composite pulses: broadband (BB), narrowband (NB),
and passband (PB) pulses [6–8]. For the BB pulses, we require
a flat top of the excitation profile at pulse area A = π ; for
the NB pulses, we require a flat bottom at area A = 0 (or
A = 2π ); for the PB pulses, we require a flat bottom at A = 0
and a flat top at A = π . In short, the composite phases for all
BB, NB, and PB sequences presented below are derived from
the following conditions:

BB:
[
∂k
AU

(N)
11

]
A=π

= 0 (k = 1,3, . . . ,N − 2); (8a)

NB:
[
∂k
AU

(N)
11

]
A=0 = 0 (k = 2,4, . . . ,N − 1); (8b)

PB:
[
∂k
AU

(N)
11

]
A=π

= 0 (k = 1,3, . . . ,M),

[∂k
AU

(N)
11 ]A=0 = 0 (k = 2,4, . . . ,N − M − 2),

(8c)

with ∂k
A ≡ ∂k/∂Ak . The omitted even- or odd-numbered

derivatives from these conditions vanish automatically for our
anagram composite sequences. For each N , there are multiple
solutions to these conditions.

B. Broadband composite sequences

We have derived an analytic formula for the phases of a BB
pulse composed of an arbitrary number of pulses,

φ
(N)
k =

(
N + 1 − 2

⌊
k + 1

2

⌋)⌊
k

2

⌋
π

N
, (9)

where k = 1,2, . . . ,N and the symbol �x� denotes the floor
function (the integer part of x). Such a pulse nullifies the
first 2N − 1 derivatives of the transition probability versus the
pulse area at the point A = π ; hence, the error ε is suppressed
to order O(ε2N ),

p = 1 − (πε/2)2N + O(ε2N+2). (10)

In this manner, an arbitrarily flat inversion profile versus
the pulse area can be produced. In Table I we show
the explicit phases φ

(N)
k for a few N . It can be shown

that with the choice (9) for the composite phases, the
transition probability produced by the composite sequence
reads p = 1 − cos2n(A/2); hence a nearly complete popu-
lation inversion can be achieved for any pulse area with
sufficiently long sequences. For N = 3, we find the well-
known composite pulse (π )0(π ) 2

3 π (π )0 [2–5]. For N = 5, we
obtain the composite pulse (π )0(π ) 4

5 π (π ) 2
5 π (π ) 4

5 π (π )0, which
appears to be new, like all solutions for larger N .

TABLE I. Phases of BB composite sequences for different
number N of ingredient resonant π pulses.

N Phases (in units of π/N )

3 0 2 0
5 0 4 2 4 0
7 0 6 4 8 4 6 0
9 0 8 6 12 8 12 6 8 0
11 0 10 8 16 12 18 12 16 8 10 0
13 0 12 10 20 16 24 18 24 16 20 10 12 0
15 0 14 12 24 20 30 24 32 24 30 20 24 12 14 0
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FIG. 1. (Color online) (top) Transition probabilities p for N -
component BB composite sequences BN versus the area of the
ingredient pulses. The composite phases are given by Eq. (9). The
dashed curve shows the single π -pulse profile for easy reference. Our
composite sequences are compared with other popular composite
pulses: W5 is the BB1 pulse of Wimperis [8], T25 is Tycko’s 25-pulse
sequence [6], and B6 is Brown’s 892-pulse sequence [30]. (bottom)
Fidelity of the profiles from the top plot.

Figure 1 shows the excitation profiles for a few BB pulses
with phases from Eq. (9). The profiles can be made arbitrarily
flat by increasing the number of pulses; see the exotic example
with 125 pulses. The logarithmic scale in the bottom plot
allows us to examine the fidelity of the profiles against the
10−4 benchmark level in quantum information [31]. The range
of pulse areas wherein the inversion error remains below
10−4 increases dramatically with N : from deviation of 0.006π

for a single pulse to 0.26π,0.62π,0.82π for N = 5,25,125,
respectively. Our pulses clearly outperform some well-known
composite pulses shown in Fig. 1 for comparison.

C. Narrowband and passband composite sequences

Figure 2 shows the excitation profiles for a few NB
composite sequences, and Fig. 3 shows the profiles for a few

TABLE II. Approximate phases of NB composite sequences for
different number N of ingredient resonant π pulses.

N Phases (in units of π )

5 0; 1.161; 0.580; 1.161; 0
9 0; 1.129; 0.822; 0.108; 1.386; 0.108; 0.822; 1.129; 0
13 0; 0.897; 1.124; 1.846; 0.292; 0.981; 1.771; 0.981; 0.292;

1.846; 1.124; 0.897; 0
17 0; 1.604; 0.553; 1.091; 0.888; 0.620; 1.535; 0.149; 1.569;

0.149; 1.535; 0.620; 0.888; 1.091; 0.553; 1.604; 0

10-6

10-4

0 0.5 1 1.5 2

N13

N9

0

0.2

0.4

0.6

0.8

1.0

1

N13

N9

N5

T
ra

ns
iti

on
P

ro
ba

bi
lit

y
p

10-2

100

N5

1

Pulse Area (in units of π)

p

FIG. 2. (Color online) (top) Transition probabilities p for N -
component NB composite sequences NN versus the area of the ingre-
dient pulses. The composite phases are listed in Table II. The dashed
curve shows the single π -pulse profile for easy reference. (bottom)
The transition probabilities from the top plot on a logarithmic scale,
which reveals the expansion of the no-transition zones around areas
A = 0 and 2π as the number of ingredient pulses increases. The
dashed curve depicts the transition probability when a random error
of 1% is included in the phases of the N9 pulse.

PB sequences. Unlike BB sequences, we have not been able
to find general analytic expressions for the composite phases
of NB and PB sequences; the numerical values are given in
Tables II and III. For NB sequences the excitation in the wings
of the profile is suppressed. PB sequences suppress both p

in the wings and 1 − p in the center; i.e., they stabilize the
excitation profile at both areas 0 (and 2π ) and π . All these
features are achieved even for low-N sequences.

In order to examine the sensitivity of the excitation against
imperfections in the composite phases, we have included
a random noise of 1% in the phases for the N9 pulse in
Fig. 2 (dashed curve in bottom plot). Such an accuracy in the
phases is readily achieved with most phase-shifting devices.
Clearly, a phase noise of this order does not affect the profile
dramatically. We have reached similar conclusions for the other
excitation profiles as well (not shown for the sake of brevity).

IV. FRACTIONAL-π PULSES

The proposed method for design of composite sequences
can be used to construct fractional-π composite sequences,
which produce robust coherent superpositions of states. We
take a sequence of N = 2n + 1 pulses with the same area, and
we determine their phases by fixing the transition probability
p to the desired value, sin2 ϑ , and annulling the first n − 1
nonzero derivatives at the desired fractional-π value, A = ϑ .
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FIG. 3. (Color online) (top) Transition probabilities p for N -
component PB composite sequences PN versus the area of the
ingredient pulses. The composite phases are listed in Table III. The
dashed curve shows the single π -pulse profile for easy reference.
(bottom) Fidelity of the P7 profile from the top plot.

For illustration, we consider a half-π composite pulse (ϑ =
π/2), which produces a coherent superposition with equal
probabilities of the two states. The composite phases are

TABLE III. Approximate phases of PB composite sequences for
different number N of ingredient resonant π pulses. The integer
number M indicates the highest derivative annulled at area A = π

[see Eq. (8c)], i.e., the larger M is, the flatter the top of the excitation
profile is.

N M Phases (in units of π )

7 1 0; 0.704; 1.186; 1.834; 1.186; 0.704; 0
9 3 0; 0.607; 1.088; 1.472; 0.226; 1.472; 1.088; 0.607; 0
11 1 0; 0.778; 0.609; 1.305; 1.572; 0.137; 1.572; 1.305;

0.609; 0.778; 0
11 5 0; 0.801; 1.144; 1.649; 0.229; 0.944; 0.229; 1.649;

1.144; 0.801; 0
13 3 0; 0.618; 0.210; 1.495; 0.740; 1.288; 1.428; 1.288;

0.740; 1.495; 0.210; 0.618; 0
13 7 0; 0.823; 0.615; 1.243; 1.317; 0.058; 1.925; 0.058;

1.317; 1.243; 0.615; 0.823; 0
15 1 0; 1.146; 0.882; 0.294; 1.822; 1.341; 0.720; 1.950;

0.720; 1.341; 1.822; 0.294; 0.882; 1.146; 0
15 5 0; 0.473; 0.421; 1.624; 1.050; 1.081; 1.469; 0.259;

1.469; 1.081; 1.050; 1.624; 0.421; 0.473; 0
15 9 0; 0.792; 0.681; 1.139; 1.582; 1.778; 0.254; 1.088;

0.254; 1.778; 1.582; 1.139; 0.681; 0.792; 0
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FIG. 4. (Color online) Transition probabilities p for N -
component half-π composite sequences versus the area of the
ingredient pulses. The area of each ingredient pulse is π/2, and the
composite phases are listed in Table IV.

determined from the following conditions:[
U

(N)
11

]
A=π/2 = 1/

√
2, (11a)[

∂k
AU

(N)
11

]
A=π/2 = 0 (k = 1,2, . . . ,n − 1). (11b)

Table IV lists a few sets of phases for different composite
sequences. Figure 4 shows the excitation profiles for sev-
eral half-π composite sequences, which produce transition
probability p = 1

2 at and around the value A = π/2. The
stabilization of the transition probability around the value
p = 1

2 is similar to the one around the value p = 1 for BB
composite π pulses in Fig. 1 and to the stabilization around
the value p = 0 for NB composite sequences in Fig. 2.

V. DETUNING-COMPENSATED COMPOSITE SEQUENCES

Up to now, we showed that our resonant composite
sequences can produce arbitrarily flat excitation profiles versus
the pulse area at various probabilities. We now show that the
same SU(2) method can be used to stabilize the excitation
profiles with respect to the frequency detuning around exact
resonance. Because for nonzero detuning the Cayley-Klein
SU(2) parameters depend on the pulse shape of the driving
field, one might expect that the composite phases will depend
on the pulse shape too. Moreover, one expects that the
explicit form of the Cayley-Klein parameters is needed for
the derivation of the composite phases, as for resonant pulses.

TABLE IV. Approximate phases of half-π composite sequences
for different number N of ingredient resonant π/2 pulses.

N Phases (in units of π )

5 0; 0.765; 0.891; 0.765; 0
7 0; 1.509; 1.029; 0.182; 1.029; 1.509; 0
9 0; 1.319; 1.830; 0.430; 0.794; 0.430; 1.830; 1.319; 0
11 0; 0.509; 0.028; 1.286; 1.258; 0.205; 1.258; 1.286; 0.028;

0.509; 0
13 0; 1.843; 0.452; 1.234; 0.758; 0.528; 1.101; 0.528; 0.758;

1.234; 0.452; 1.843; 0
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Therefore, we begin with an analytically exactly soluble
model, with a hyperbolic-secant pulse shape, and then we
show that under some symmetry conditions, the composite
phases do not depend on the pulse shape up to a certain order.

A. Hyperbolic-secant pulse shape

In the famous Rosen-Zener model [20], the pulse has a
hyperbolic-secant shape and a constant detuning,

�(t) = �0 sech (t/T ), �(t) = const. (12)

For this model the Cayley-Klein parameters are [20]

a = 

(

1
2 + iδ

)2



(

1
2 + iδ − α

)



(
1
2 + iδ + α

) , (13a)

b = −i
sin πα

cosh πδ
, (13b)

with α = �0T /2 and δ = �T /2. The transition probability
is p = |b|2 = sin2 πα sech 2πδ, which means that complete
population inversion takes place for �0T = (2k + 1) (with
k integer) and � = 0. We take again N = 2n + 1 pulses
with the same area and symmetric phases, φN+1−k = φk (k =
1,2, . . . ,n), so that the excitation profile is symmetric versus
�. We multiply the SU(2) propagators for each ingredient
pulse, and then we set the first n − 1 derivatives of U

(N)
11 (�)

with respect to � to zero at � = 0,[
∂k
�U

(N)
11

]
�=0 = 0 (k = 0,1, . . . ,n − 1). (14)
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FIG. 5. (Color online) (top) Transition probability p and
(bottom) the error 1 − p vs the detuning for a single sech pulse
and for a sequence of five 3π/5 pulses with phases (approxi-
mately) (0,0.747,0.424,0.747,0)π and nine 4π/9 pulses with phases
(0,1.308,1.153,1.251,0.562,1.251,1.153,1.308,0)π .

We determine the composite phases from the resulting set of
algebraic equations. In general, there are multiple solutions for
each N . For N = 3, a �-compensated pulse is π0ππ/3π0. For
larger N , the phases are derived numerically. Figure 5 shows
the excitation profiles for a few �-compensated composite
sequences. As the bottom plot shows, even moderately large
composite sequences greatly enhance the 10−4 error tolerance
range: from detunings ±0.006/T for a single pulse to
±0.13/T for the five-pulse sequence and ±0.26/T for the
nine-pulse sequence.

B. General case

The described method, although well suited for analytically
soluble models, can be applied to arbitrary pulse shapes too,

e.g., Gaussian, �(t) = �
−t2/T 2

0 . We have found that the phases
of composite sequences of up to five pulses do not depend on
the pulse shape provided the latter is symmetric,

�(−t) = �(t). (15)

In order to prove this we use the fact that for such pulse shapes
the Cayley-Klein parameters can be written as

a = fe(�) + if o(�), b = −i

√
1 − f 2

e (�) − f 2
o (�), (16)

where the labels e and o stand for even and odd functions,
respectively. We also note that after differentiation, an odd
function becomes even and vice versa. Next, we obtain the
Taylor expansion of a at � = 0 and set the first few terms
to zero (the more phases we have, the more terms we can
nullify). Then we notice that, due to Eq. (16), the equations
for the phases do not depend on the particular forms of fe

and f o. This property is conserved for sequences of up to five
pulses, which means that the respective composite phases are
universal.

C. Simultaneous stabilization versus pulse area and detuning

Another application of this method is for obtaining profiles
that are flat versus both A and �. The phases are derived in
the same way as before, but now we nullify derivatives versus
both A and �, [

∂k1+k2

∂Ak1∂�k2

]
(A=π,�=0)

= 0, (17)

where the values of k1 and k2 determine the flatness versus the
respective parameter A and �. An example for a five-pulse
composite sequence is shown in Fig. 6. It demonstrates how
the small high-fidelity central spot in the top plot is greatly
expanded by the composite sequence in the bottom plot.

VI. DISCUSSION

A. Pulse sequences

The composite pulse sequences presented in this paper
can be produced in various manners. Pulsed laser systems
operating at repetition rates 100 MHz, in combination with
standard programmable phase shifters, can produce composite
sequences of pulses with a time duration on the scale of 100 ns.
One can, however, use a femtosecond pulse shaper in order to
produce composite sequences on a femtosecond time scale.
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FIG. 6. (Color online) Transition probability versus detuning and
pulse area (top) for a single pulse and (bottom) for a five-pulse
composite sequence with phases (0,5π/6,π/3,5π/6,0).

For example, consider a sequence of 2n + 1 cos2s pulses (with
s a positive integer), with the following Rabi frequency in the
time domain:

�(t) =
{

cos2s(t/T ), −(
n + 1

2

)
πT � t �

(
n + 1

2

)
πT,

0, otherwise.

(18)

Let us impose on each pulse a phase as given by Eq. (9)
and explicitly shown in Table I. In order to produce this
model by femtosecond pulse-shaping technology, one needs
to know the Fourier spectrum of the pulse sequence, which
is readily computed; however, it is too long to be shown
here. What is very important is that the Fourier spectra of our
composite sequences, with the pulse shapes of Eq. (18) and
the phases of Eq. (9), have the following asymptotic behavior
at large frequencies, regardless of the number of ingredient
pulses:

�̃(ω) ∼ O(ω−2s−1). (19)

This rapid decrease makes femtosecond pulse shaping and
coherent control by composite sequences on a femtosecond
time scale possible.

We note here that the composite sequences derived by us
require pulse areas of π (or less) for the ingredient pulses.
Excitation with such pulse areas has already been achieved
in femtosecond physics; it has been shown that pulses with
well-controlled areas of several π [32–34] and even adiabatic
evolution, which requires larger pulse areas [35–37], can be
achieved.

B. Decoherence

The composite sequences derived in this paper did not
take decoherence into account. This assumption is reason-
able in various implementations. As explained above, our
technique is applicable to the femtosecond time scale when
the pulse sequence is produced by a pulse shaper; then
decoherence is largely irrelevant. On the longer time scales,
decoherence should be taken into account if one of the qubit
states is an excited electronic state. However, in quantum
information processing, the qubit is usually composed of
two ground states or a ground state and a metastable state,
connected with a two-photon Raman transition. Then a
coherence time larger than 1 s can be achieved [10–15],
and decoherence can be ignored. We note here that deco-
herence can be suppressed with approaches similar to com-
posite pulse sequences, known as “dynamical suppression of
decoherence” [38].

C. Phase jitter

Because the technique of composite sequences demands
relatively accurately specified relative phases of the ingredient
pulses, the control over these phases is the most important part
of the technique. It is therefore essential to know and control
the possible sources of phase jitter. In Fig. 2 (bottom plot) we
have included an excitation profile (dashed curve) in which a
random phase jitter of 1% was introduced. Phase shifts with
an uncertainty well below this value are readily obtained with
standard pulse shapers (for femtosecond pulses) and phase
shifters (for nanosecond and microsecond pulses).

A more important issue to address is the free evolution phase
shift between the two states of the qubit, which interferes with
the composite phases; such a phase should be incorporated
in the composite phases. We note that, because we work in
the interaction representation, Eq. (1), and in RWA, it is the
frequency detuning that determines the free-evolution phase,
rather than the transition frequency. On resonance such a phase
shift is naturally absent. For off-resonant pulses, this phase
should be accounted for in the calculation of the phases.

VII. CONCLUSION

We presented a general method for the design of a huge
variety of composite sequences of pulses with smooth temporal
shapes. This allows the application of composite sequences
to coherent atomic excitation with short and ultrashort laser
pulses. Because our method uses SU(2) propagators in the
Schrödinger picture instead of the commonly used SO(3)
rotations in the Bloch picture, it is simpler both algebraically
and numerically and easily generates many additional solu-
tions, which appear superior to the known ones (cf. Fig. 1).
An important advantage of our method is that the resulting
composite pulses produce excitation profiles in which the
robustness against variations in the parameters is accompanied
with ultrahigh fidelity, well beyond the fault tolerance limit of
quantum computation [31]; this is a topic that is rarely, if ever,
investigated in the literature on composite pulses. We have
found that composite pulse sequences are ideally suited for this
objective. On resonance (� = 0), the composite sequences do
not depend on the pulse shape; our method has allowed us
to derive a variety of broadband, narrowband, and passband
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sequences of arbitrary flatness with regard to the pulse area.
In particular, we have found a simple analytic formula for
the phases of arbitrarily accurate broadband sequences. It
is particularly important that this independence of the pulse
shape is extended also off resonance for composite sequences
composed of up to five identical single pulses. This universality
is of potential significance in cases when the desired pulse
shape is hard to produce. We also point out that, because
smooth temporal shapes induce exponential dependence of
the excitation probability on � [20,39], such pulse shapes
facilitate the elimination of sidebands in the excitation profiles

of �-compensated composite pulses, which are always present
with rectangular pulse shapes. This suppression of excitation
sidebands is of potential significance for selective manipula-
tion of collective states of many-particle systems in quantum
information processing.
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